/**
* @file median_search.cpp
* @brief Implementation of [Median search](https://en.wikipedia.org/wiki/Median_of_medians) algorithm.
* @cases from [here](https://brilliant.org/wiki/median-finding-algorithm/)
*
* @details
* Given an array A[1,...,n] of n numbers and an index i, where 1 ≤ i ≤ n, find the i-th smallest element of A.
* median_of_medians(A, i):
* #divide A into sublists of len 5
* sublists = [A[j:j+5] for j in range(0, len(A), 5)]
* medians = [sorted(sublist)[len(sublist)/2] for sublist in sublists]
* if len(medians) <= 5:
* pivot = sorted(medians)[len(medians)/2]
* else:
* #the pivot is the median of the medians
* pivot = median_of_medians(medians, len(medians)/2)
* #partitioning step
* low = [j for j in A if j < pivot]
* high = [j for j in A if j > pivot]
* k = len(low)
* if i < k:
* return median_of_medians(low,i)
* elif i > k:
* return median_of_medians(high,i-k-1)
* else: #pivot = k
* return pivot
*
* \note this algorithm implements median search for only arrays which have distinct elements
*
* Here are some example lists you can use to see how the algorithm works
* A = [1,2,3,4,5,1000,8,9,99] (Contain Unique Elements)
* B = [1,2,3,4,5,6] (Contains Unique Elements)
* print median_of_medians(A, 0) #should be 1
* print median_of_medians(A,7) #should be 99
* print median_of_medians(B,4) #should be 5
*
* @author Unknown author
* @author [Sushil Kumar](https://github.com/Rp-sushil)
*/
#include <iostream>
#include <algorithm>
#include <vector>
#include <cassert>
/**
* @namespace search
* @brief Search algorithms
*/
namespace search {
/**
* @namespace median_search
* @brief Functions for [Median search](https://en.wikipedia.org/wiki/Median_search) algorithm
*/
namespace median_search {
/**
* This function search the element in an array for the given index.
* @param A array where numbers are saved
* @param idx current index in array
* @returns corresponding element which we want to search.
*/
int median_of_medians(const std::vector<int>& A, const int& idx) {
int pivot = 0; // initialized with zero
std::vector<int> a(A.begin(), A.end());
std::vector<int> m;
int r = a.size();
for(int i = 0; i < r; i += 5){
std::sort(a.begin() + i, a.begin() + std::min(r, i + 5));
int mid = (i + std::min(r, i + 5)) / 2;
m.push_back(a[mid]);
}
int sz = int(m.size());
if(sz <= 5){
std::sort(m.begin(), m.end());
pivot = m[(sz- 1) / 2];
}
else{
pivot = median_of_medians(m, idx);
}
std::vector<int> low;
std::vector<int> high;
for(int i = 0; i < r; i++){
if(a[i] < pivot){
low.push_back(a[i]);
}
else if(a[i] > pivot){
high.push_back(a[i]);
}
}
int k = int(low.size());
if(idx < k){
return median_of_medians(low, idx);
}
else if(idx > k){
return median_of_medians(high, idx-k-1);
}
else{
return pivot;
}
}
} // namespace median_search
} // namespace search
/**
* Function to test above algorithm
*/
void test(){
std::vector<int> A{25,21,98,100,76,22,43,60,89,87};
int i = 3;
assert(A[6] == search::median_search::median_of_medians(A, i)); // A[6] = 43, is the fourth smallest element.
std::cout << "test case:1 passed\n";
std::vector<int> B{1,2,3,4,5,6};
int j = 4;
assert(B[4] == search::median_search::median_of_medians(B, j)); // B[4] = 5, is the fifth smallest element.
std::cout << "test case:2 passed\n";
std::vector<int> C{1,2,3,4,5,1000,8,9,99};
int k = 3;
assert(C[3] == search::median_search::median_of_medians(C, k)); // C[3] = 4, is the fourth smallest element.
std::cout << "test case:3 passed\n";
std::cout << "--All tests passed--\n";
}
/**
* Main function
*/
int main()
{
test();
int n = 0;
std::cout << "Enter Size of Array: ";
std::cin >> n;
std::vector<int> a(n);
std::cout << "Enter Array: ";
for(int i = 0; i < n; i++){
std::cin >> a[i];
}
std::cout << "Median: "; // Median defination: https://en.wikipedia.org/wiki/Median
int x = search::median_search::median_of_medians(a, (n - 1) / 2);
if(n % 2 == 0){
int y = search::median_search::median_of_medians(a, n / 2);
std::cout << (float(x) + float(y))/2.0;
}
else{
std::cout << x;
}
std::cout << "\nTo find i-th smallest element ";
std::cout << "\nEnter i: ";
int idx = 0;
std::cin >> idx;
idx--;
std::cout << idx + 1<< "-th smallest element: " << search::median_search::median_of_medians(a, idx) << '\n';
return 0;
}