The Algorithms logo
The Algorithms
AboutDonate

Leftist Heap

a
package com.thealgorithms.datastructures.heaps;

import java.util.ArrayList;

/* 
 * This is a leftist heap that follows the same operations as a
 * binary min heap, but may be unbalanced at times and follows a
 * leftist property, in which the left side is more heavy on the
 * right based on the null-path length (npl) values.
 * 
 * Source: https://iq.opengenus.org/leftist-heap/
 * 
 */

public class LeftistHeap {
	private class Node {
		private int element, npl;
		private Node left, right;

		// Node constructor setting the data element and left/right pointers to null
		private Node(int element) {
			this.element = element;
			left = right = null;
			npl = 0;
		}
	}

	private Node root;

	// Constructor
	public LeftistHeap() {
		root = null;
	}

	// Checks if heap is empty
	public boolean isEmpty() {
		return root == null;
	}

	// Resets structure to initial state
	public void clear() {
		// We will put head is null
		root = null;
	}

	// Merge function that merges the contents of another leftist heap with the
	// current one
	public void merge(LeftistHeap h1) {
		// If the present function is rhs then we ignore the merge
		root = merge(root, h1.root);
		h1.root = null;
	}

	// Function merge with two Nodes a and b
	public Node merge(Node a, Node b) {
		if (a == null)
			return b;

		if (b == null)
			return a;

		// Violates leftist property, so must do a swap
		if (a.element > b.element) {
			Node temp = a;
			a = b;
			b = temp;
		}

		// Now we call the function merge to merge a and b
		a.right = merge(a.right, b);

		// Violates leftist property so must swap here
		if (a.left == null) {
			a.left = a.right;
			a.right = null;
		} else {
			if (a.left.npl < a.right.npl) {
				Node temp = a.left;
				a.left = a.right;
				a.right = temp;
			}
			a.npl = a.right.npl + 1;
		}
		return a;
	}

	// Function insert. Uses the merge function to add the data
	public void insert(int a) {
		root = merge(new Node(a), root);
	}

	// Returns and removes the minimum element in the heap
	public int extract_min() {
		// If is empty return -1
		if (isEmpty())
			return -1;

		int min = root.element;
		root = merge(root.left, root.right);
		return min;
	}

	// Function returning a list of an in order traversal of the data structure
	public ArrayList<Integer> in_order() {
		ArrayList<Integer> lst = new ArrayList<>();
		in_order_aux(root, lst);
		return new ArrayList<>(lst);
	}

	// Auxiliary function for in_order
	private void in_order_aux(Node n, ArrayList<Integer> lst) {
		if (n == null)
			return;
		in_order_aux(n.left, lst);
		lst.add(n.element);
		in_order_aux(n.right, lst);
	}
}