package com.thealgorithms.datastructures.queues;
/**
* A [deque](https://en.wikipedia.org/wiki/Double-ended_queue) is short for a
* double ended queue pronounced "deck" and sometimes referred to as a head-tail
* linked list. A deque is a data structure based on a doubly linked list, but
* only supports adding and removal of nodes from the beginning and the end of
* the list.
*
* @author [Ian Cowan](https://github.com/iccowan)
*/
public class Deques<T> {
/**
* Node for the deque
*/
class DequeNode<S> {
/**
* Value of the node
*/
S val;
/**
* Next node in the deque from this node
*/
DequeNode<S> next = null;
/**
* Previous node in the deque from this node
*/
DequeNode<S> prev = null;
/**
* Constructor
*/
DequeNode(S val) {
this.val = val;
}
}
/**
* Head of the deque
*/
DequeNode<T> head = null;
/**
* Tail of the deque
*/
DequeNode<T> tail = null;
/**
* Size of the deque
*/
int size = 0;
/**
* Adds the specified value to the head of the deque
*
* @param val Value to add to the deque
*/
public void addFirst(T val) {
// Create a new node with the given value
DequeNode<T> newNode = new DequeNode<T>(val);
// Add the node
if (head == null) {
// If the deque is empty, add the node as the head and tail
head = newNode;
tail = newNode;
} else {
// If the deque is not empty, insert the node as the new head
newNode.next = head;
head.prev = newNode;
head = newNode;
}
size++;
}
/**
* Adds the specified value to the tail of the deque
*
* @param val Value to add to the deque
*/
public void addLast(T val) {
// Create a new node with the given value
DequeNode<T> newNode = new DequeNode<T>(val);
// Add the node
if (tail == null) {
// If the deque is empty, add the node as the head and tail
head = newNode;
tail = newNode;
} else {
// If the deque is not empty, insert the node as the new tail
newNode.prev = tail;
tail.next = newNode;
tail = newNode;
}
size++;
}
/**
* Removes and returns the first (head) value in the deque
*
* @return the value of the head of the deque
*/
public T pollFirst() {
// If the head is null, return null
if (head == null) {
return null;
}
// First, let's get the value of the old head
T oldHeadVal = head.val;
// Now, let's remove the head
if (head == tail) {
// If there is only one node, remove it
head = null;
tail = null;
} else {
// If there is more than one node, fix the references
head.next.prev = null;
DequeNode<T> oldHead = head;
head = head.next;
// Can be considered unnecessary...
// Unlinking the old head to make sure there are no random
// references possibly affecting garbage collection
oldHead.next = null;
}
size--;
return oldHeadVal;
}
/**
* Removes and returns the last (tail) value in the deque
*
* @return the value of the tail of the deque
*/
public T pollLast() {
// If the tail is null, return null
if (tail == null) {
return null;
}
// Let's get the value of the old tail
T oldTailVal = tail.val;
// Now, remove the tail
if (head == tail) {
// If there is only one node, remove it
head = null;
tail = null;
} else {
// If there is more than one node, fix the references
tail.prev.next = null;
DequeNode<T> oldTail = tail;
tail = tail.prev;
// Similarly to above, can be considered unnecessary
// See `pollFirst()` for explanation
oldTail.prev = null;
}
size--;
return oldTailVal;
}
/**
* Returns the first (head) value of the deque WITHOUT removing
*
* @return the value of the head of the deque
*/
public T peekFirst() {
return head.val;
}
/**
* Returns the last (tail) value of the deque WITHOUT removing
*
* @return the value of the tail of the deque
*/
public T peekLast() {
return tail.val;
}
/**
* Returns the size of the deque
*
* @return the size of the deque
*/
public int size() {
return size;
}
/**
* Returns whether or not the deque is empty
*
* @return whether or not the deque is empty
*/
public boolean isEmpty() {
return head == null;
}
/**
* Returns a stringified deque in a pretty form:
*
* <p>
* Head -> 1 <-> 2 <-> 3 <- Tail
*
* @return the stringified deque
*/
@Override
public String toString() {
String dequeString = "Head -> ";
DequeNode<T> currNode = head;
while (currNode != null) {
dequeString += currNode.val;
if (currNode.next != null) {
dequeString += " <-> ";
}
currNode = currNode.next;
}
dequeString += " <- Tail";
return dequeString;
}
public static void main(String[] args) {
Deques<Integer> myDeque = new Deques<Integer>();
for (int i = 0; i < 42; i++) {
if (i / 42.0 < 0.5) {
myDeque.addFirst(i);
} else {
myDeque.addLast(i);
}
}
System.out.println(myDeque);
System.out.println("Size: " + myDeque.size());
System.out.println();
myDeque.pollFirst();
myDeque.pollFirst();
myDeque.pollLast();
System.out.println(myDeque);
System.out.println("Size: " + myDeque.size());
System.out.println();
int dequeSize = myDeque.size();
for (int i = 0; i < dequeSize; i++) {
int removing = -1;
if (i / 39.0 < 0.5) {
removing = myDeque.pollFirst();
} else {
removing = myDeque.pollLast();
}
System.out.println("Removing: " + removing);
}
System.out.println(myDeque);
System.out.println(myDeque.size());
}
}